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The nonlocal coherent-potential approximation �NLCPA� has recently been introduced for describing short-
range correlations in disordered systems, and has been used to study short-range-ordering effects in alloys.
However, it has recently been shown to yield spurious and nonunique results for small cluster sizes used in the
calculation �with such features gradually disappearing as the cluster size increases�. In this paper we reformu-
late the NLCPA as a unique and systematic theory. The formalism is based upon averaging the �phase-
dependent� Green’s function over all possible choices of phase. As a consequence, a fully continuous self-
energy and spectral function are obtained for all cluster sizes. We show that the previous formalism is a specific
limiting case of the reformulation, and explicitly demonstrate the theory for a one-dimensional tight-binding
model in order to compare with exact numerical results.
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I. INTRODUCTION

Substitutionally disordered systems are comprised of a
random distribution of N sites over a lattice, each of which
can be of a different type � with the corresponding probabili-
ties of occupation or concentrations c� summing to unity,
i.e., ��c�=1. For example, a disordered binary alloy consists
of sites which can be of chemical type �=A or B. Because an
exact average over all possible configurations of the system
is impractical �in most realistic applications N→��, approxi-
mation schemes have been introduced which average exactly
over the fluctuations confined to a small number of sites in
the system. Over the years, this effort has led to a great
number of approximate treatments of disorder within both
non-self-consistent and self-consistent formalisms. Self-
consistent theories fall in the category of mean-field theories,
exemplified by the Weiss molecular theory of magnetism,
and generally lead to results that provide a more accurate
representation of physical properties.

A widely used method is the single-site coherent-potential
approximation1 �CPA�, in which the effects of disorder are
described by considering a single site embedded in an effec-
tive medium. The medium is determined in a self-consistent
manner through the condition that the scattering of an elec-
tron �or wave� off the potential represented by the site em-
bedded in this medium vanishes when averaged over its pos-
sible type �. While the CPA has generally proved to be the
most satisfactory single-site approach to the study of disor-
der, its principle limitation is that it yields a self-energy that
is site diagonal and hence k independent. In other words,
nonlocal correlations in the disorder fluctuations are com-
pletely neglected. In particular, this means that the method is
unable to take account of short-range-order �SRO� effects in
a self-consistent manner. SRO is, for example, always
present in the disordered phase of an alloy and can strongly
influence physical properties and phase evolution.

The need to improve upon the CPA has motivated the
development of a variety of cluster theories �see Ref. 2 for an

extensive review�. One of the better-known attempts is the
molecular coherent-potential approximation3–5 �MCPA�, the
properties of which are well understood. All one needs to do
is replace the concept of a single site with that of a cluster
whose periodic repetition generates the lattice to obtain the
formal description of this approximation. Like the CPA, the
MCPA is analytic and leads to a medium that is described by
a cluster diagonal self-energy �as the single-site CPA leads to
a site-diagonal one�. However, such a generalization of the
CPA violates one of the formal properties that must be satis-
fied by any self-consistent cluster theory2 in that it leads to a
medium which breaks the translational invariance of the un-
derlying lattice. Although the MCPA accounts exactly for the
statistical fluctuations within a cluster of sites, giving cor-
rectly such properties as densities of states associated with
distinct cluster configurations,2 the lack of translational in-
variance is a great drawback for the formal validity and prac-
tical viability of the theory. The edges of the reduced Bril-
louin zone �BZ� associated with a cluster superstructure can
lead to spurious and hence unphysical scattering effects on
wave propagation. Thus, for example, the study of electronic
transport or phonons loses much of its formal integrity as the
effects of this scattering cannot be easily corrected.2

The need to provide a description of SRO within a
method that preserves the translational invariance of the un-
derlying lattice has been keenly felt almost since the intro-
duction of the CPA. In spite of great expenditure in formal
and computational effort, only recently has a viable solution
been proposed, namely, the nonlocal coherent-potential ap-
proximation �NLCPA� introduced by Jarrell and Krishnamur-
thy in Ref. 6. The method originates from the dynamical
cluster approximation7,8 �DCA� developed for describing
nonlocal dynamical correlations in correlated electron sys-
tems. The NLCPA was subsequently developed within the
framework of multiple-scattering theory �Korringa-Kohn-
Rostoker �KKR�–NLCPA �Refs. 9–11��, and was recently
combined with density-functional theory in Ref. 12, enabling
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first-principles total-energy calculations to be carried out for
realistic systems.

In contrast to the MCPA, the NLCPA handles correlations
in the disorder fluctuations in reciprocal space. This is
achieved by first dividing the lattice into sublattices, which
in reciprocal space is equivalent to dividing the BZ into tiles.
Therefore the full BZ of the underlying lattice is always con-
sidered as opposed to the smaller supercell BZ involved in
the MCPA. Each sublattice is assumed to have its own self-
energy, which is approximated as a constant in the
reciprocal-space tile occupied by that sublattice. In other
words, correlations in the disorder fluctuations between sites
on the same sublattice are neglected. However correlations
between sites on different sublattices remain. The medium is
determined by mapping to a self-consistently embedded clus-
ter with periodic Born–von Kármán boundary conditions im-
posed.

However, while many NLCPA calculations have appeared
in the literature, until recently13 the properties of the NLCPA
had not been thoroughly investigated for the simplest case of
a one-dimensional �1D� tight-binding model. This is the most
difficult test case for a cluster theory since fluctuations are
most significant in one dimension, and many previous at-
tempts at cluster theories were found to be nonvalid only
when tested for such a model.2 Indeed, such an investigation
was recently carried out for the NLCPA in Ref. 13, where
some shortcomings of the theory were discovered. First, it
was found that �for cluster sizes Nc larger than one site� the
density of states �DOS� contains spurious features which
cannot be identified in the DOS obtained by exact methods14

or real-space cluster approximations such as the MCPA or
embedded-cluster method15 �ECM�. These spurious features
are particularly apparent for small values of Nc but system-
atically disappear as Nc increases. Second, it is known that
for a given real-space cluster, the corresponding choice of
“cluster momenta” �see Sec. II� is not unique.8 By using a
different choice of cluster momenta, a different set of results
�also containing spurious features� was obtained in Ref. 13.
Hence the NLCPA appears to be a nonunique theory. How-
ever, it was also found that the differences between these two
sets of results systematically disappear as Nc increases. In
fact, at some “critical”16 cluster size Ncr, the differences be-
come negligible,17 at which point all spurious features in the
DOS also disappear. A third �and related� unsatisfactory
property of the NLCPA is that it yields a spectral function
with jumps �discontinuities� resulting from approximating
the self-energy as a step function in reciprocal space.18

In summary, the current formulation of the NLCPA �and
DCA� may only be considered a unique and systematic cor-
rection to the CPA above a specific starting cluster size Ncr.
Although the above issues can be avoided by using a cluster
size larger than Ncr, this is not always computationally vi-
able. More importantly, a valid cluster generalization of the
CPA should always yield unique results for any given cluster
size Nc, and should give systematic improvements as the
cluster size increases from 1 to �. In this paper we introduce
a reformulation of the NLCPA which satisfies these require-
ments and eliminates all the problems outlined above. In
fact, it is shown that the previous formalism is a specific
limiting case of the reformulation.

The outline of this paper is as follows: First we briefly
summarize the conventional NLCPA formalism in the con-
text of a tight-binding Hamiltonian. We then describe the
reformulation, detail the replacement algorithm, and show
how to calculate properties. Finally, we show detailed results
of the theory for the 1D tight-binding model, in particular the
convergence properties of the DOS, self-energy, and spectral
function.

II. FORMALISM

A. Conventional nonlocal coherent-potential approximation

Following Refs. 6 and 8, we provide a brief review of the
conventional NLCPA here. In a basis labeled by the sites of
the direct lattice, we will consider a tight-binding Hamil-
tonian with matrix elements

Hij = �i�ij + Wij�1 − �ij� , �1�

where �i is the on-site energy at site i and Wij is the param-
eter describing the hopping between site i and site j. Denot-
ing a specific configuration of ��i� as � and the correspond-
ing Green’s function for that configuration by G�, the exact
average over all configurations may be written in the form

�G�
ij	 = G0

ij + �
k,l

G0
ik�kl�G�

lj	 , �2�

where G0
ij is the free-particle Green’s function and �ij is the

exact self-energy. Equation �2� may be equivalently ex-
pressed in reciprocal space as

�G�k�	 = G0�k� + G0�k���k��G�k�	 . �3�

Let us begin the discussion of the NLCPA by conceptual-
izing a real-space lattice with lattice constant a as a set of Nc
sublattices. In reciprocal space this is equivalent to dividing
the BZ of the lattice into Nc tiles, each centered at a
reciprocal-sublattice vector Kn, with n=1, . . . ,Nc. The lattice
momenta k within a given tile n correspond to differences
between sites on sublattice n with lattice constant Nca only.
An illustrative example for a simple 1D lattice is given in
Fig. 1. It is important to realize that at this stage no approxi-
mations have been made; the original lattice problem has

(a)

(b)

a

K1 K2 K3 K4

0−π
a

π
a

FIG. 1. �a� Division of a 1D lattice into Nc=4 sublattices. Each
sublattice is represented by a different fill pattern and has a lattice
constant 4a. We may form a cluster of Nc=4 sites by taking a site
from each sublattice. �b� Reciprocal-sublattice vectors Kn given by
multiples of 2	 /4a. Each sublattice Brillouin zone �BZ� occupies a
region of k space Nc=4 times smaller than the original lattice BZ.
However, Nc=4 of these “tiles” �represented by double-headed ar-
rows� together comprise the original lattice BZ.
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simply been reformulated in terms of Nc sublattices.
Next, let us consider an isolated cluster of Nc sites �I� with

periodic Born–von Kármán boundary conditions imposed.
This can be visualized as each end mapping back to the other
end along each axis; so, for example, in one dimension it is
simply a ring of Nc sites. Clearly, the BZ of such a system
contains Nc evenly spaced points in reciprocal space, referred
to as the set of cluster momenta �Kn�. The usual lattice Fou-
rier transform becomes

1

Nc
�
Kn

eiKnRIJ = �IJ, �4�

where RIJ is the vector distance between the centers of sites
I and J. Averaged cluster quantities are translationally invari-
ant and can be related in real and reciprocal spaces through
Eq. �4�. For example, we have the expressions

�IJ =
1

Nc
�
Kn

��Kn�eiKn�RI−RJ� �5�

and

��Kn� = �
J

�IJe−iKn�RI−RJ� �6�

for the cluster self-energy.
The cluster momenta and reciprocal-sublattice vectors

have the same periodicity and we can choose these sets �Kn�
to be equivalent. However in order to couple the cluster to
the lattice while preserving translational invariance, two ap-
proximations are needed. The first is to approximate the ex-
act lattice self-energy �for a disordered system� ��k� as a
step function passing through the values obtained from the
cluster, i.e.,

��k� = ��Kn� �7�

for k lying within the nth reciprocal-space tile. In real space,
this means that correlations between sites on the same sub-
lattice are neglected and only correlations between sites on
different sublattices remain. Thus the range of correlation
included is restricted by the number of sublattices consid-
ered, or equivalently the size of the cluster.

The second approximation �which is an approximation
even for a pure ordered system� is to set the phase factors
eik·RIJ to unity in the lattice Fourier transform. This means
that the lattice Green’s function in reciprocal space may be
represented by the set of values

Ḡ�Kn� =
Nc


BZ




Kn

dk�E − W�k� − ��Kn��−1, �8�

since we are now free to sum over the dispersion within each
tile. These values are straightforward to calculate since
��Kn� is constant �coarse grained� within each tile 
Kn

. This
approximation has been proven6 to be causal �analytic�, and
physically it removes information about the relative location
of the cluster sites to the lattice. Therefore each cluster site is
coupled to the effective medium in exactly the same way
irrespective of its location within the cluster. Using Eq. �4�,
the real-space Green’s function at the cluster sites becomes

ḠIJ =
1


BZ
�
Kn




Kn

dk�E − W�k� − ��Kn��−1eiKn�RI−RJ�.

�9�

Finally, while the above describes how correlations in the
fluctuations are handled in k space, the fluctuations them-
selves must be defined in real space. To do that, we must first
define the reciprocal-space cavity Green’s function G�Kn� via
the Dyson equation

Ḡ�Kn� = G�Kn� + G�Kn���Kn�Ḡ�Kn� , �10�

which is introduced to avoid overcounting self-energy con-
tributions from the cluster. Equation �10� can also be ex-
pressed in real space by applying Fourier transform equation
�4� to yield the expression

ḠIJ = GIJ + �
K,L

GIK�KLḠLJ. �11�

While GIJ is independent of the chemical occupation of the
cluster itself, note that it differs from the analogous quantity
introduced in the ECM and MCPA since it does not have a
real-space expansion. Nevertheless, an impurity cluster
Green’s function may be defined by replacing the cluster
self-energy in Eq. �11� with a particular configuration of site
energies ���

I �, i.e.,

G�
IJ = GIJ + �

K

GIK��
KG�

KJ. �12�

The NLCPA imposes the self-consistency condition

�
�

P�G�
IJ = ḠIJ, �13�

where P� is the probability of configuration � occurring, ap-
propriately weighted to include SRO if desired. The effective
medium is therefore determined from a self-consistent solu-
tion of Eqs. �9� and �13�. See Ref. 6 for details of the algo-
rithm. The formalism reduces to the CPA for Nc=1 and be-
comes exact as Nc→�.

B. Reformulation

As described above, the conventional NLCPA imposes
periodic Born–von Kármán boundary conditions on the clus-
ter with the relationship between the cluster sites and cluster
momenta defined through Eq. �4�.6 Since Eq. �4� is simply a
discretized version of the usual lattice Fourier transform as a
result of having only Nc sites in the system, it is important to
observe that the lattice constant remains unchanged and
hence the cluster BZ has the same dimensions as the lattice
BZ. Next, observe that for a given real-space cluster there are
in fact an infinite number of solutions to Eq. �4�. Conven-
tionally, the set of cluster momenta which includes the origin
Kn= �0,0 ,0� for some n in reciprocal space has been chosen,
a convention adopted in all later implementations. However
by fixing the BZ origin at, say, �0,0,0� and including some
arbitrary phase � such that
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1

Nc
�

n

ei�Kn·RIJ−�� = �IJ, �14�

we see that a continuous distribution of solutions are pos-
sible. By writing � in the form �=�d�d, where d=x, y, or z,
the phase can be varied in each spatial direction indepen-
dently. For a 1D or two-dimensional �2D� square or a three-
dimensional �3D� cubic system, the components of the pos-
sible cluster momenta values are then given by

Knd =
�d

Nc
1/Da

−
2	n

Nc
1/Da

for n = 1, . . . ,Nc, �15�

where a is the lattice constant, D is the number of dimen-
sions, and 0��d�2	 �with a periodicity of 2	� for each
d=x ,y ,z. Similar relations can be found for any given lat-
tice.

Notation. Since we can select phases in each direction d
independently, let us define a set of phases ��d� as a set of D
values �where D is the dimensionality� containing one value
in each direction d. We can then write Kn=Kn��d� in order
to label the cluster momenta values by the choice of set ��d�,
and Eq. �14� becomes

1

Nc
�

n

eiKn��d�RIJ = �IJ. �16�

For clarity during the following derivation and discussion,
we will assume three dimensions so that Kn
=Kn��x ,�y ,�z�.

It is clear that �d has the effect of shifting the positions of
the �evenly spaced� cluster momenta in direction d within the
BZ. Of course, for an isolated cluster with Born–von Kármán
boundary conditions, it is possible to similarly shift the BZ
origin and hence phase differences are irrelevant. However,
the situation is different in the NLCPA when we couple the
cluster to the lattice in reciprocal space. First let us fix the
cluster BZ origin relative to the lattice BZ origin, and label
this difference as OBZ �e.g., zero�. The next step is to divide
the lattice BZ into tiles centered at the cluster momenta, and
approximate the �unknown� lattice self-energy ��k� as a step
function via

��k� = ��Kn��x,�y,�z�� �17�

within each tile n, meaning only correlations between sites
on different sublattices are included. Since OBZ is fixed, the
values of the cluster momenta are fixed relative to the lattice
momenta �k�. Significantly, it follows that changing any of
the phases ��x ,�y ,�z� will yield a different step function. In
turn, the configurationally averaged Green’s function for a
cluster of Nc sites in real space now depends on the choice of

phases. Each G�̄ ��x ,�y ,�z� describes a different NLCPA me-
dium and hence calculated physical observables also vary
with respect to the choice of ��x ,�y ,�z�. An example of the
BZ tiling as a function of �x for a 1D lattice is illustrated in
Fig. 2.

In summary, the approximation made via Eq. �17� intro-
duces a dependence on phase �or equivalently a dependence
on choice of cluster momenta� into the system. This depen-
dence must be eliminated in order to obtain a unique theory,

i.e., an averaged Green’s function that is unique for a given
cluster size. To achieve this, it is clear that in addition to
averaging over all cluster configurations at each iteration in
the algorithm via the sum

ḠIJ��x,�y,�z� = �
�

P�G�
IJ��x,�y,�z� �18�

for a given set of ��x ,�y ,�z�, we must also average over all
possible phases via the expression

ḠIJ =
1

�2	�D

0

2	 

0

2	 

0

2	

d�xd�yd�zḠ
IJ��x,�y,�z� .

�19�

This yields an averaged Green’s function that is unique for a
given cluster size Nc, and so calculated physical observables
no longer depend on an individual choice of phases. If we
discretize the continuous distribution in Eq. �19� by includ-
ing only a finite number of phases, we can minimize the
error in the moments by including an appropriate weighting
distribution.19

There are two important points to appreciate about Eq.
�19�. First, it should be noted that in the original formulation
of the NLCPA �Ref. 6� �and DCA �Ref. 8��, all choices of
phase other than ��x ,�y ,�z�= �0,0 ,0� and ��x ,�y ,�z�
= �	 ,	 ,	� were ruled out since the corresponding
reciprocal-space tilings do not preserve the point-group sym-
metry of the underlying lattice. This can be seen from Fig. 2
in one dimension where certain equivalent lattice momenta k
�i.e., certain pairs of values symmetric about the origin� are
mapped to nonequivalent tiles for all choices other than �x
=0 �or 2	� and �x=	. However, in the reformulation pre-
sented here, point-group symmetry is naturally restored
when averaging over all possible choices of phases via Eq.

−π
a

−π
a

−π
a

−π
a

−π
a

π
a

π
a

π
a

π
a

π
a

0

0

0

0

0

K1(2π) K2(2π) K3(2π) K4(2π)

K1(
3π
2 ) K2(

3π
2 ) K3(

3π
2 ) K4(

3π
2 )

K1(π) K2(π) K3(π) K4(π)

K1(
π
2 ) K2(

π
2 ) K3(

π
2 ) K4(

π
2 )

K1(0) K2(0) K3(0) K4(0)

FIG. 2. BZ tiling for a selection of values of �x for a 1D lattice
with Nc=4. The selection is taken from the continuous distribution
of available values 0��x�2	. The Kn��x� points are marked by
crosses, and the corresponding tiles by double-headed arrows. Ob-
serve the symmetry about the central value in the distribution �x

=	. For example, the Kn��x� points and corresponding tiling are
equivalent for the extreme values �x=0 and �x=2	.
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�19�. Moreover, Eq. �19� preserves the crucial requirement of
causality since it is a sum of functions which are themselves
causal �analytic�.

While averaging the Green’s function over all phases in
real space via Eq. �19� is intuitively clear, we need to express
Eq. �19� in k space in order to proceed further and develop
an algorithm to determine the new medium. We will see that
the resulting expression is equivalent to averaging over all
possible choices of cluster momenta.

From the solutions given by Eq. �15�, we obtain the rela-
tions

d�x = �Nc
1/Da�dKnx,

d�y = �Nc
1/Da�dKny ,

d�z = �Nc
1/Da�dKnz, �20�

which we can use to change the variables in Eq. �19�. Chang-
ing variables together with substituting the relation

ḠIJ��x,�y,�z� =
1

Nc
�

n

Ḡ�Kn��x,�y,�z��ei�Kn��x,�y,�z��·RIJ

�21�

yields the expression

ḠIJ = � a

2	
�D

�
n

 dKnḠ�Kn��x,�y,�z��ei�Kn��x,�y,�z��·RIJ,

�22�

where the notation implies that


 dKn

= 

Knx�0�

Knx�2	� 

Kny�0�

Kny�2	� 

Knz�0�

Knz�2	�

dKnx��x�dKny��y�dKnz��z� .

�23�

Here

Ḡ�Kn��x,�y,�z�� = 


Kn��x,�y,�z�

dk�E − W�k�

− ��Kn��x,�y,�z���−1, �24�

where 
Kn��x,�y,�z�
is the volume of the reciprocal-space tile

associated with the cluster momentum point Kn��x ,�y ,�z�.
By substituting Eq. �24� into Eq. �22� and then reversing the
order of the integrals, we arrive at the result

ḠIJ =
1


BZ
�

n




Kn��x,�y,�z�

dkei�Kn��x,�y,�z��·RIJ

�
 dKn�E − W�k� − ��Kn��x,�y,�z���−1. �25�

The volume integration over k in the first integral simply
equates to an integral over the first BZ for any choice of
phases. Therefore the k-space Green’s function can be de-

fined as a sum over all possible choices of cluster momenta
in the form

Ḡ�k� =
 dKn�E − W�k� − ��Kn��x,�y,�z���−1, �26�

where dKn has been defined through Eq. �23� and the sum
includes the appropriate set of ��Kn��x ,�y ,�z�� associated
with the point k.

This completes the formal relations needed to derive an
algorithm. The idea is to self-consistently determine the me-
dium self-energy at each point Kn��d�, where n=1, . . . ,Nc
and each �d takes a selection of values in the range 0��d
�2	 for d=x ,y ,z. Let us denote the number of sets of
phases ��d� included by Np. It is clear that as we increase Np,
we will get a more accurate description of the medium self-
energy for a given cluster size Nc. While the reformulation
reduces to the conventional formalism for Np=1, in contrast
the self-energy will no longer be a simple step function for
Np�1. In fact if we include a sufficient number of phases
such that the number of Kn��d� points is equivalent to the
number of k points in the BZ, then we can calculate the
self-energy correctly �k point by k point� for a given cluster
size.

C. Replacement algorithm

�1� Begin with a guess for the �fully k-dependent� me-
dium self-energy ��k�, e.g., zero.

�2� For each n �where n=1, . . . ,Nc�, sample ��k� at a
selection of Np sets of phases ��d�, yielding the values
���Kn��d���.

�3� Calculate the set of “coarse-grained” Green’s func-
tions,

Ḡ�Kn��d�� = 


Kn��d�

dk�E − W�k� − ��Kn��d���−1,

for each n and each set of phases ��d�.
�4� Calculate the k-space cavity Green’s function at the

set of sample points via the equation

G�Kn��d�� = �Ḡ�Kn��d��−1 + ��Kn��d���−1,

and convert to real space using the relation

GIJ��d� =
1

Nc
�

n

G�Kn��d��eiKn��d�·RIJ.

�5� Calculate the impurity Green’s function

G� ���d� = G��d� + G��d�V� �G� ���d�

for each set ��d�, where V� is an impurity cluster configura-
tion. Here an underscore denotes a matrix in the space of the
cluster sites.

�6� Sum over all configurations; i.e., calculate the con-
figurationally averaged Green’s function by summing over
all impurity cluster configurations,
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ḠIJ��d� = �
�

P�G�
IJ��d�

for each set ��d�, where P� is the probability of configuration
� occurring.

�7� Calculate the new �phase-dependent� self-energy
��

IJ��d� via the equation

�� ���d� = G��d�−1 − Ḡ� ��d�−1,

and convert to k space through the relation

���Kn��d�� = �
J

��
IJ��d�e−iKn��d�·RIJ

for each n and each set ��d�.
�8� Sum over all phases; i.e., calculate the �fully

k-dependent� medium Green’s function

Ḡ�k� =
 dKn�E − W�k� − ���Kn��d���−1,

where


 dKn

= 

Knx�0�

Knx�2	� 

Kny�0�

Kny�2	� 

Knz�0�

Knz�2	�

dKnx��x�dKny��y�dKnz��z�

in three dimensions, and the sum includes the appropriate set
of ���Kn��d�� associated with the point k.

�9� Calculate the new �fully k-dependent� medium self-
energy �new�k� via the Dyson equation,

�new�k� = E − W�k� − Ḡ�k�−1.

Due to the averaging in step 8, this is now uniquely defined
at each k point.

�10� Compare �new�k� with the old ��k� in step 1. If they
are not equivalent within some prescribed tolerance, then
repeat the algorithm from step 2 until convergence is
achieved. The equivalent algorithm for implementation in
first-principles KKR codes is given in the Appendix.

D. Notes on the algorithm

Convergence condition. While the algorithm determines a
fully k-dependent medium self-energy, in practice it is only
necessary to ensure convergence at the sample points.

Short-range order. Short-range order can be self-
consistently included by incorporating an appropriate non-
random probability distribution �P�� when averaging over
the configurations in step 6 of the algorithm. The distribution
should be chosen to preserve the symmetries of the underly-
ing lattice.

Computational time. While the computational cost scales
as Np, this is partially offset since the algorithm converges
much more quickly for Np�1. This is because the solution
becomes more stable as Np increases since we are getting
closer to the correct effective medium. For example, the total
number of iterations required is reduced by more than half

when increasing Np=1 to Np=2 for the 1D calculations pre-
sented later in this paper. Computational time can be reduced
further by utilizing symmetry when selecting the phases �see
below�. Also, computational time can be saved by using a
fast Fourier transform �FFT� algorithm to implement the dis-
crete Fourier transforms in steps 4 and 7.

Choice of phases. While the cluster momenta correspond-
ing to a given set of phases ��d� are always evenly spaced,
the distribution of the phases themselves is arbitrary. If com-
putational time is not an issue, one can simply choose the
phases to be evenly spaced in each direction �in which case
the integration in step 8 of the algorithm conveniently re-
duces to a simple average� and include a sufficient number to
ensure convergence. Otherwise, the spacings should be cho-
sen to minimize the error in the moments. This could also
involve the introduction of a weighting distribution ����d��k��
�with elements tending to unity as Np→�� which can be
included when averaging over all phases in step 8 of the
algorithm. This would optimize the convergence of the me-
dium �and hence bulk properties� with respect to Np and
hence minimize the value of Np required to ensure conver-
gence. The optimum distribution of phases and weighting
function for use in realistic NLCPA calculations is currently
being investigated.

Point-group symmetry. Only the sets ��x ,�y ,�z�
= �0,0 ,0� and ��x ,�y ,�z�= �	 ,	 ,	� individually preserve
the point-group symmetry of the lattice if only one set is
included in the calculation �i.e., Np=1�. However, for Np
�1, point-group symmetry will be restored when averaging
over all Np sets ��d� provided one avoids choosing sets that
are not symmetric to each other about ��x ,�y ,�z�
= �	 ,	 ,	�. This problem can be avoided �and computational
time can be saved� by choosing sets ��d� only from the irre-
ducible part of the tile centered at Kn�	 ,	 ,	� for n
=1, . . . ,Nc, and then utilizing point-group symmetry in the
calculation.

E. Calculating properties

Once the algorithm has converged, the averaged density
of states for the system is given by

n�E� = −
1

	
Im ḠII, �27�

where ḠII is the site-diagonal part of the phase-independent
configurationally averaged Green’s function, and any cluster

site I may be chosen because of translational invariance. ḠII

is most straightforwardly obtained from the BZ integral,

ḠII =
1


BZ




BZ

dkḠ�k� , �28�

where Ḡ�k� is defined by Eq. �26� and is calculated at step 8
of the algorithm above. Similarly, the Bloch spectral function

is obtained from Ḡ�k� via the expression

AB�k� = −
1

	
Im Ḡ�k� �29�

for a given energy.
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Since the reformulation is fully self-consistent, we can
also obtain partially averaged �component� density of states.
To do that, we must first calculate the �phase-dependent�
impurity Green’s function G� ���d� for a given cluster con-
figuration �. This is defined by Eq. �18� and is calculated at
step 5 of the algorithm. We must then sum over all phases in
real space via the expression

G�
IJ =

1

�2	�D

0

2	 

0

2	 

0

2	

d�xd�yd�zG�
IJ��x,�y,�z� .

�30�

�Note that if the phases have been chosen to be evenly
spaced, then the above integration simply reduces to a simple
average.� For a given cluster configuration �, the partially
averaged �cluster component� DOS measured on any site I is
then given by the matrix element G�

II. Furthermore, single-
site component DOS may be defined at a cluster site I by
averaging G�

II over all configurations �� which contain site I
as the desired species �, i.e.,

G�
II = �

��

P��G�,��
II , �31�

where the notation implies that site I is a site of species �, ��
is a configuration of the remaining sites in the cluster, and
P�� is the probability of that configuration occurring. Again,
the �G�

II� are independent of the choice of cluster site I be-
cause of translational invariance.

F. Comparison with the molecular coherent-potential
approximation

The MCPA and NLCPA are two different, although
complementary, approaches to treating disorder. The MCPA
treats correlations in real space, whereas the NLCPA prima-
rily handles correlations in reciprocal space. The differences
between the analogous theories for strongly correlated sys-
tems, namely, the cellular dynamical mean-field theory20

�DMFT� and DCA,7,8 were thoroughly analyzed in Ref. 21.
However, the differences between the MCPA and NLCPA are
often misunderstood in the literature and the NLCPA is often
incorrectly interpreted as a supercell-type calculation.22–24 It
is therefore worth discussing the main differences between
the two theories here.

The MCPA divides the lattice into periodically repeating
clusters, each with open boundary conditions. In other
words, the self-energy is cluster diagonal and hence there are
no self-energy terms linking sites in different clusters. Quan-
tities are not translationally invariant within each cluster, and
hence the corresponding medium has cluster �supercell� pe-
riodicity.

In contrast, the NLCPA divides the lattice into sublattices,
and a compact cluster may be formed anywhere by taking a
site from each sublattice. Phase factors containing informa-
tion about the relative location of sites within the cluster to
sites in the medium are neglected and hence each cluster site
is topologically equivalent. By mapping to a cluster with

periodic Born–von Kármán boundary conditions imposed
�i.e., a ring in one dimension�, the resulting medium has the
single-site translational invariance of the underlying lattice.
It is only the range of correlations included that is restricted
by the number of sublattices considered �size of cluster� and
so the self-energy �IJ always has terms linking sites within
the range RI–RJ.

These two contrasting approaches to the treatment of cor-
relations mean that there are marked differences in results
obtained from the two theories.13 Band edges and gaps are
treated less accurately by the MCPA due to its supercell pe-
riodicity. On the other hand, the NLCPA neglects phase fac-
tors containing topological information within the cluster and
hence yields less fine structure in the DOS than the MCPA.
Indeed, the DOS measured on the central site in the MCPA
converges to the exact result more quickly than the DOS
obtained from the NLCPA, although the �reformulated�
NLCPA shows convergence properties which can be consid-
ered very systematic with increasing cluster size.

III. RESULTS

In order to investigate the reformulation explicitly, results
are presented for the 1D tight-binding model with diagonal
disorder and nearest-neighbor hopping. This is the most dif-
ficult test case since fluctuations are most significant in one
dimension. Furthermore, detailed structure is expected in the
DOS which can be compared with the exact DOS obtainable
by numerical means in one dimension.14

For Nc even, the set of cluster momenta in one dimension
is given by

�Kn��x�� =
�2n − Nc�	 − �x

Nca
, n = 1, . . . ,Nc �32�

for a given �x, where �x can take a value in the range 0
��x�2	 �with a periodicity of 2	�. When performing cal-
culations with more than one phase included, we choose the
values to be evenly spaced so that �x

m= �2	m� /Np, where Np
is the number of phases and m=1, . . . ,Np. We have also set
the elements of the weighting distribution ���x

�k�� to unity
for all values of Np.

We have taken the site energies to be �A= +2.0 and �B=
−2.0 with random probability �i.e., no short-range order�, and
the nearest-neighbor hopping parameter to be W=1.0. This
corresponds to the “split-band” regime, where the pure bands
are just touching as previously investigated in Refs. 2 and
13. The pure bands together with the exact numerical result
for a random A50B50 alloy �obtained using the negative ei-
genvalue theorem14� are shown in Figs. 3�a�–3�c�. Figure
3�d� shows the CPA result for the same A50B50 alloy, with the
smooth structure due to the neglect of nonlocal correlations
being apparent. See Ref. 13 for a more detailed discussion of
this model.

First, in order to demonstrate the nonuniqueness of the
conventional formalism, a selection of DOS results obtained
with a cluster size of Nc=2 are shown in Fig. 4. As discussed
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previously,13 the conventional �x=0 choice contains spuri-
ous structure such as large troughs at E= �1.5 not seen in
the exact calculation in Fig. 3�c� or with calculations using
real-space cluster methods such as the ECM or MCPA. As
the value of �x is increased, the change in the structure of the
DOS is apparent. Eventually at �x=	 we obtain a DOS
equivalent to the single-site CPA, where correlations are
completely neglected. Such spurious features are accentuated
further if short-range order is included by weighting the
probabilities in the ensemble average.

In order to examine the extent to which the unique refor-
mulation of the NLCPA bridges the gap between the CPA
and exact result, Fig. 5 shows DOS results for the same
A50B50 alloy obtained using the NLCPA for a selection of
cluster sizes Nc �left to right� as a function of the number of
phases included Np �top to bottom�. The Nc=1 result �CPA�
is of course independent of Np. The Np=1 result shown here
is obtained using the �x=0 value conventionally used in the
old formalism and contains spurious features as noted above.
However, here we see that such features are removed as Np is
increased. In fact, for a given cluster size the correct DOS is
formally obtained when Np→�. However in practice we see
that far fewer phases are generally needed; e.g., for Nc=2
any changes are numerically insignificant above a “critical”
value Np=8. It is also apparent that the number of phases
needed for convergence generally decreases as Nc increases.
This is because the increased number of cluster momenta
means the BZ is being more densely sampled to begin with.
In fact, only one phase is required when Nc�12 to obtain the
correct DOS for the given cluster size for this 1D model �this
is however not true for the spectral function; see below�. As
Nc is increased further beyond Nc=12 �not shown here�, the
DOS by definition eventually converges to the exact result in
Fig. 3�c�.

In order to gain some insight into the DOS results, Fig. 6
shows the imaginary part of the k-space self-energies calcu-
lated using the NLCPA at an example energy of E= �3.0.
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FIG. 3. �a� DOS �as a function of energy� for a pure material
comprised of A sites, with �A= +2.0. �b� DOS for a pure material
comprising of B sites, with �B=−2.0. �c� Exact DOS results for a
random A50B50 alloy of the pure materials above. �d� DOS for the
same A50B50 alloy obtained using the CPA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 0.2π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 1.2π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 0.4π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 1.4π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 0.6π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 1.6π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 0.8π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 1.8π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = π

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4

φx = 2π

FIG. 4. Results for the configurationally averaged DOS per site
as a function of energy obtained using the conventional NLCPA
with cluster size Nc=2. A selection from the continuous distribution
of available �nonunique� results is shown. Each calculation uses a
different phase �x and the distribution is symmetric about the cen-
tral value 	 with periodicity of 2	. However, only the �x=0 �or
2	� and �x=	 calculations individually preserve the point-group
symmetry of the underlying lattice. Notice that the �x=	 result is
equivalent to the single-site CPA. This is because the self-energy is
necessarily a constant in k space �owing to the symmetry of the
cluster momenta about the BZ origin�. Hence all nearest-neighbor
correlation is removed; i.e., the cluster is in antiphase with the
lattice.
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Again, results are shown for a selection of cluster sizes Nc as
a function of the number Np of phases included. First observe
that the Nc=1 �CPA� result is a constant since the CPA self-
energy is independent of both k and Np. As Nc increases, we
see that the self-energy for Np=1 is the familiar step function
of the old formalism with large discontinuities at the k-space
tile boundaries. This is particularly evident for Nc=2. As Np
is increased, it is apparent how we get closer and closer to
the correct self-energy for the given cluster size Nc as the
number of steps increases and the step function smoothens
into a curve. Since we are now averaging over Np�Nc
k-space tiles, formally the self-energy will only become
completely smooth in the continuous limit Np→�.

Figure 7 shows the spectral functions corresponding to the
self-energy graphs in Fig. 6 at the same example energy of
E= �3.0. First, observe that for Np=1, the discontinuities in
the spectral function can be large even for large cluster sizes
where the self-energy has more initial steps. In a similar
fashion to the self-energies in Fig. 6, while the number of
discontinuities increases as Np increases, the size of the dis-
continuities decreases and the convergence toward the cor-
rect spectral function for a given cluster size is clear. We also
see that since the spectral function is a more sensitive quan-
tity than the DOS, a higher value for Np is generally required
to obtain the correct spectral function here than that needed
to obtain the correct DOS seen in Fig. 5. For example, more
than one phase is still needed at Nc=12.

Finally, it should be pointed out that below the critical
value for Np, a different choice for the distribution of sets
��d� will yield different results. However, since calculations
for simple 1D and 2D models are not computationally ex-
pensive, convergence with respect to Np and hence unique
results can be easily ensured. In principle, however, the spac-
ing of the phases �together with an appropriate weighting
distribution� should be chosen to minimize the error in the
moments. This would optimize the convergence and hence
minimize the critical value of Np.

IV. CONCLUSIONS

A reformulation of the nonlocal coherent-potential ap-
proximation has been presented which yields a unique con-
figurationally averaged Green’s function for a given cluster
size. It has been demonstrated that this reformulation is nec-
essary in order to calculate physical quantities correctly
within the NLCPA.

A key feature of the reformulation is that a fully self-
consistent average is performed over all possible choices of
cluster momenta. This removes the error that is introduced
into the system by approximating the self-energy as a step
function in k space for a given choice of cluster momenta.
Consequently, the theory yields a fully continuous k-space
self-energy and spectral function for all cluster sizes. Impor-
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FIG. 5. Configurationally averaged DOS per site as a function of energy �in units of the bandwidth� obtained using the NLCPA as a
function of cluster size Nc �left to right� and number of phases included Np �top to bottom�. The single phase result is for the conventional
�x=0 choice.
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tantly, this also means that the reformulation can be readily
used to study SRO effects on Fermi surfaces of alloys, and
could also be used as a basis for a theory of electronic
transport25 in disordered systems with SRO.

Another possible future area of applications is alloy ener-
getics. Indeed, the NLCPA has recently been combined with
density-functional theory for ab initio total-energy calcula-
tions. The resulting self-consistent-field �SCF�–KKR–
NLCPA �Ref. 12� method can be straightforwardly adapted
in analogy to the reformulation presented in this paper. While
there are many alternative approaches aimed specifically at
the calculation of alloy energetics �see Ref. 26 and references
therein�, an attractive feature of the NLCPA is that, like the
single-site CPA, it could be used as a basis for a global ab
initio mean-field theory of disorder which would describe
concentration fluctuations in alloys27 and also spin fluctua-
tions in magnets at finite temperature.28 Although the SCF-
KKR-NLCPA can now be correctly implemented for any
available cluster size, a practical limitation is the high com-
putational cost for large cluster sizes due to the 2Nc scaling
�for a binary system�, where Nc is the number of sites in the
cluster. This needs to be addressed by implementing paral-
lelization and importance sampling of the cluster disorder
configurations. Finally, in addition to those research
groups6,10–13,22,25,29–33 performing calculations with the

NLCPA, the work in this paper should be of significant in-
terest to groups working with the DCA �Refs. 7 and 8� for
the 2D Hubbard model.
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APPENDIX: FIRST-PRINCIPLES ALGORITHM

Due to the analogy2 between quantities in the tight-
binding �TB� formalism and multiple-scattering KKR for-
malism, the TB formalism and algorithm presented in this
paper can be carried over to KKR. As originally demon-
strated in Ref. 9 for the conventional NLCPA, the key step is
identifying the quantities in KKR which play the role of the
self-energy in the TB framework.

First, the site-diagonal part of the self-energy �II can be
straightforwardly identified with the inverse of the effective
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FIG. 6. Imaginary part of the self-energy as a function of k obtained using the NLCPA at an example energy of E= �3.0. Results are
shown for a selection of cluster sizes Nc �left to right� and number of phases included Np �top to bottom�. The single phase result is for the
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t-matrix t̂� in KKR, which we denote as m̂
=

. Second, since the
off-diagonal part of the self-energy �IJ can be viewed as
providing effective medium �average� corrections to the pure
hopping terms WIJ within the TB framework, the off-
diagonal terms �IJ can be identified with effective correc-

tions �Ĝ�RIJ� to the free-space structure constants G� �RIJ�
within KKR. Therefore the quantity playing the role of the

self-energy, which we denote as X̂, has matrix elements

X̂
=

= X�̂ 11 X�̂ 12 X�̂ 13
¯

X�̂ 21 X�̂ 22 X�̂ 23
¯

X�̂ 31 X�̂ 32 X�̂ 33
�

�
= m�̂ − �Ĝ�R12� − �Ĝ�R13� ¯

− �Ĝ�R21� m�̂ − �Ĝ�R23� ¯

− �Ĝ�R31� − �Ĝ�R32� m�̂ �

�

X̂
=

�K� = X̂� �K1� 0 0 ¯

0 X̂� �K2� 0 ¯

0 0 X̂� �K3� �

�
= m̂� − �Ĝ�K1� 0 0 ¯

0 m̂� − �Ĝ�K2� 0 ¯

0 0 m̂� − �Ĝ�K3� �

�
in real and reciprocal spaces, respectively, where an under-
score denotes a matrix in the angular momentum index. Note

however that �Ĝ
=

�RIJ� takes account of nonlocal scattering
correlations only. Nonlocal charge correlations can be de-
scribed by combining the KKR-NLCPA with density-
functional theory. This was recently carried out for the con-
ventional KKR-NLCPA in Ref. 12 and provides a Madelung
contribution to the total energy.

For completeness, the basic algorithm for the NLCPA re-
formulation is given below within KKR. All real-space ma-
trices in the algorithm are matrices in the cluster site and
angular momentum index only �denoted by a double under-
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FIG. 7. Spectral function AB�k� obtained using the NLCPA at an example energy of E= �3.0. Results are shown for a selection of cluster
sizes Nc �left to right� and number of phases included Np �top to bottom�. The single phase result is for the conventional �x=0 choice. With
increasing Np, observe the systematic convergence toward the correct spectral function for a given Nc. Also observe the convergence toward
the exact spectral function with increasing Nc.
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score� and all reciprocal-space matrices are diagonal.
�1� Begin with a guess for the �fully k-dependent� quan-

tity X̂� �k�; e.g., for the first iteration use the �k-independent�
inverse of an average t matrix �ATA�.

�2� Sample X̂� �k� at a selection of Np sets of phases ��d�
for each n, where n=1, . . . ,Nc, yielding the set �X̂� �Kn��d���.

�3� Calculate the set of coarse-grained scattering path ma-
trix elements

�̂��Kn��d�� = 


Kn��d�

dk�X̂� �Kn��d�� − G� �k��−1

for each n and each set ��d�, where G� �k� are the free-space
structure constants.

�4� Calculate the k-space cavity function ̂ at the set of
sample points via the equation

̂� �Kn��d�� = X̂� �Kn��d�� − ��̂��Kn��d���−1,

and convert to real space using the relation

̂�
IJ��d� =

1

Nc
�

n

̂� �Kn��d��eiKn��d�·RIJ.

�5� Calculate the impurity scattering path matrix

�=���d� = �m=� − ̂
=

��d��−1

for each set ��d�, where m� � is a cluster configuration of
inverse t matrices.

�6� Sum over all configurations; i.e., calculate the con-
figurationally averaged path matrix by summing over all im-
purity cluster configurations,

�̂�
IJ��d� = �

�

P����
IJ��d� ,

for each set ��d�, where P� is the probability of configuration
� occurring.

�7� Calculate the new �phase-dependent� matrix elements

X̂� �
IJ��d� via the equation

X̂
=���d� = �=��d�−1 + ̂

=
��d� ,

and convert to k space using the relation

X̂� ��Kn��d�� = �
J

X̂� �
IJ��d�e−iKn��d�·RIJ

for each n and set ��d�.
�8� Sum over all phases; i.e., calculate the �fully

k-dependent� path matrix

�̂��k� =
 dKn�X̂� ��Kn��d�� − G� �k��−1,

where


 dKn

= 

Knx�0�

Knx�2	� 

Kny�0�

Kny�2	� 

Knz�0�

Knz�2	�

dKnx��x�dKny��y�dKnz��z�

in three dimensions, and the sum includes the appropriate set

of X̂� ��Kn��d�� associated with the point k.
�9� Calculate the new �fully k-dependent� quantity

X̂�
new�k� via the equation

X̂�
new�k� = �̂��k�−1 + G� �k� .

�10� Compare X̂�
new�k� with the old X̂� �k� in step 1. If they

are not equivalent within some prescribed tolerance, then
repeat the algorithm from step 2 until convergence is
achieved.

See Ref. 10 for full details of the quantities involved. The
fully charge self-consistent total-energy formulation12 can be
similarly generalized.
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